pressure in this space is figured by subtracting the
measured  vacuum  (10  in.Hg)  from  the  nearly
perfect   vacuum   (29.92   in.Hg).   The   absolute
pressure  then  will  be  19.92  or  about  20  in.Hg
absolute. Note that the amount of pressure in a
space  under  vacuum  can  only  be  expressed  in
terms  of  absolute  pressure.
You may have noticed that sometimes we use
the  letters  psig  to  indicate  gauge  pressure  and
other  times  we  merely  use  psi.  By  common
convention,  gauge  pressure  is  always  assumed
when pressure is given in pounds per square inch,
pounds  per  square  foot,  or  similar  units.  The  g
(for  gauge)  is  added  only  when  there  is  some
possibility of confusion. Absolute pressure, on the
other  hand,  is  always  expressed  as  pounds  per
square  inch  absolute  (psia),  pounds  per  square
foot  absolute  (psfa),  and  so  forth.  It  is  always
necessary  to  establish  clearly  just  what  kind  of
pressure we are talking about, unless this is very
clear  from  the  nature  of  the  discussion.
To  this  point,  we  have  considered  only  the
most  basic  and  most  common  units  of  measure-
ment.  Remember  that  hundreds  of  other  units  can
be derived from these units; remember also that
specialized   fields   require   specialized   units   of
measurement.  Additional  units  of  measurement
are introduced in appropriate places throughout
the remainder of this training manual. When you
have  more  complicated  units  of  measurement,  you
may find it helpful to review the basic informa-
tion given here first.
PRINCIPLES  OF  HYDRAULICS
The word  hydraulics is  derived  from  the  Greek
word for water  (hydor)  plus the Greek word for
a reed instrument like an oboe (aulos). The term
hydraulics   originally  covered  the  study  of  the
physical behavior of water at rest and in motion.
However,  the  meaning  of  hydraulics  has  been
broadened  to  cover  the  physical  behavior  of  all
liquids,  including  the  oils  that  are  used  in  modern
hydraulic  systems.  The  foundation  of  modern
hydraulics   began   with   the   discovery   of   the
following  law  and  principle:
.  Pascals  lawThis  law  was  discovered  by
Blaise  Pascal,  a  French  philosopher  and
mathematician who lived from 1623 to 1662 A.D.
His law, simply stated, is interpreted as pressure
exerted  at  any  point  upon  an  enclosed  liquid  is
transmitted   undiminished   in   all   directions.
Pascals law governs the BEHAVIOR of the static
factors  concerning  noncompressible  fluids  when
taken by themselves.
.  Bernoullis  principleThis  principle  was
discovered  by  Jacques  (or  Jakob)  Bernoulli,  a
Swiss philosopher and mathematician who lived
from  1654  to  1705  A.D.  He  worked  extensively
with  hydraulics  and  the  pressure-temperature
relationship.   Bernoullis   principle   governs   the
RELATIONSHIP   of   the   static   and   dynamic
factors  concerning  noncompressible  fluids.  Figure
2-13  shows  the  effect  of  Bernoullis  principle.
Chamber A is under pressure and is connected by
a  tube  to  chamber  B,  also  under  pressure.
Chamber  A  is  under  static  pressure  of  100
psi.  The  pressure  at  some  point,  X,  along  the
connecting tube consists of a velocity pressure of
10 psi. This is exerted in a direction parallel to
the   line   of   flow,   Added   is   the   unused   static
pressure of 90 psi, which obeys Pascals law and
operates  equally  in  all  directions.  As  the  fluid
enters  chamber  B  from  the  constricted  space,  it
slows  down.  In  so  doing,  its  velocity  head  is
changed  back  to  pressure  head.  The  force  required
to   absorb   the   fluids   inertia   equals   the   force
required  to  start  the  fluid  moving  originally.
Therefore,  the  static  pressure  in  chamber  B  is
again  equal  to  that  in  chamber  A.  It  was  lower
at  intermediate  point  X.
Figure 2-13 disregards friction, and it is not
encountered in actual practice. Force or head is
also  required  to  overcome  friction.  But,  unlike
inertia  effect,  this  force  cannot  be  recovered  again
although  the  energy  represented  still  exists
somewhere as heat. Therefore, in an actual system
the pressure in chamber B would be less than in
chamber A. This is a result of the pressure used
in  overcoming  friction  along  the  way.
At all points in a system, the static pressure
is always the original static pressure LESS any
velocity head at the point in question. It is also
Figure 2-13.Relationship of static and dynamic factors
Bernoullis  principle.
2-17